Lecture 11: Inversion Coefficient

- Notes from
 Tradeoffs and Optimization in Analog CMOS Design
 David M. Binkley
 University of North Carolina at Charlotte, USA

- Review of notes from Dr. Fox

- Example from
 A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications
 Reid R. Simmons, Jonathan D.F.C. and Cameron Clapson, Victor VanRoey, 2007

Bipolar collector current and transconductance

- The bipolar transistor collector current, base–emitter voltage relationship is given by
 \[I_C = I_S e^{\frac{v_{BE}}{U_T}} \]

- Bipolar Transconductance
 \[g_m = \frac{\partial I_C}{\partial V_{BE}} = \frac{I_C}{U_T} \]
 \[g_m = \left(\frac{g_m}{I_C} \right) \cdot I_C \]

- Bipolar transistor transconductance efficiency
 \[\frac{g_m}{I_C} = \frac{I_C}{U_T} = \frac{1}{U_T} \]

For a thermal voltage UT = 25.9mV at room temperature (300K or 27°C), bipolar transistor transconductance efficiency is 38.6V or 38.6µS/µA. This means a transconductance of 38.6µS or 38.6mS is produced for a collector bias current of 1A or 1mA, respectively, found by multiplying the transconductance efficiency by the collector bias current.
MOS Drain Current and Transconductance

In Weak Inversion

In weak inversion, the drain-source saturation voltage is frequently taken as $V_{DS_{sat}} = V_{GS} - V_T$, while $V_{DS_{sat}} = (V_{GS} - V_T)/n$ may be a better choice since body effect along the channel raises the local threshold voltage and lowers the drain-source voltage required for inversion charge pinch-off.

Transconductance efficiency in strong inversion is then given by

$$\frac{g_m}{I_D} = \frac{2}{\sqrt{\frac{2 I_D}{V_{G_S} - V_T}}} = \frac{2}{\sqrt{\frac{2 I_D}{V_{G_S} - V_T}}}$$

For a thermal voltage $U_T = 25.9$mV at room temperature and substrate factor $n = 1.5$, MOS weak inversion transconductance efficiency is 25.7uS/uA, which is approximately 67% of the bipolar transistor transconductance efficiency of 38.6uS/uA where n, again, is effectively unity.

In weak inversion, n is related to the capacitive voltage division between the gate voltage and silicon surface potential resulting from the gate-oxide, depletion, and interface state capacitances. In weak inversion, n is expressed by

$$n = \frac{C_{GS} + C_{GD} + C_{DS}}{\frac{C_{GD}}{C_{ox}} + \frac{C_{DS}}{C_{ox}} + \frac{C_{GS}}{C_{ox}}}$$

The required increase in gate–source voltage for a factor-of-10 increase in drain current is given by the subthreshold swing

$$S = \ln(10) n U_T = 2.303 \cdot n U_T \text{ (mV/decade)}$$

The weak inversion swing is approximately 90 mV/decade for bulk CMOS processes at room temperature, assuming $n = 1.5$ and $U_T = 25.9$mV.
In Moderate Inversion and All Regions of Operation

- Unified expressions for drain current
 - More complex expression include velocity saturation, DIBL, CLM effects

<table>
<thead>
<tr>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_D(WI) = 2\pi \mu_C C_{ox} U_{DS} \left(\frac{W}{L} \right) \left(\frac{V_{GS} - V_T}{e^{\frac{V_{DS}}{V_T}} - 1} \right)$</td>
</tr>
<tr>
<td>$I_D(SI) = \frac{1}{2} \left(\frac{2\mu_C C_{ox}}{e} \right) \left(\frac{W}{L} \right) (V_{GS} - V_T)^2$</td>
</tr>
<tr>
<td>$I_D(WI-SI) = 2\pi \mu_C C_{ox} U_{DS} \left(\frac{W}{L} \right) \left(\ln \left(1 + e^{\frac{V_{GS} - V_T}{2V_T}} \right) \right)^2$</td>
</tr>
</tbody>
</table>

Designing with Inversion Coefficient (IC)

- Bias point of the MOS transistor can be quantified by
 - Gate overdrive $V_{GS} - V_T$
 - Transconductance current ratio, g_{m}/I_D
 - Or the inversion coefficient (IC)

Inversion Coefficient (IC) is a normalized measure of MOS drain current that numerically describes the level of channel inversion.
Inversion Coefficient (IC)

Equating the weak-inversion transconductance, with the strong-inversion transconductance, gives

\[
\frac{g_m}{I_D} = \frac{I_D}{nU_T} = g_m = \sqrt{2L \left(\frac{\mu C_{ox}}{n} \right) \left(\frac{W}{L} \right)}
\]

Solving for the drain current \(I_D = \text{ID (moderate)} \) that gives equal weak- and strong-inversion transconductance gives

\[
I_D = \frac{2n\mu C_{ox} U_T^2}{W/L}
\]

This is the drain current for a device operating in the center of moderate inversion where the predicted weak- and strong-inversion transconductances are equal.

Define IC as the ratio of \(I_D \) to \(I_D \) in Moderate Inversion

\[
IC = \frac{I_D}{I_D (\text{M.I.})} = \frac{I_D}{2n\mu C_{ox} U_T^2} = \frac{I_D}{I_D (W/L)}
\]

\(I_D \) is the technology current

\[
I_D = 2n\mu C_{ox} U_T^2
\]

Relationship between transconductance efficiency and IC

Differentiating the drain current with respect to the gate–source voltage followed by dividing by the drain current

\[
\frac{g_m}{I_D} = \frac{1 - e^{-\sqrt{IC}}}{nU_T \sqrt{IC}}
\]

A more accurate expression

\[
\frac{g_m}{I_D} = \frac{1}{nU_T \left(\sqrt{IC} + 0.5 \sqrt{IC} + 1 \right)}
\]

And simple expression

\[
\frac{g_m}{I_D} = \frac{1}{nU_T \left(\sqrt{IC} + 0.25 + 0.5 \right)}
\]
V_{EFF} and IC

V_{EFF} from weak through strong inversion can be derived from the continuous drain current expression.

$$I_D = 2\pi \mu_0 C_{\text{ox}} U_T^2 \left(\frac{W}{L} \right) \ln \left(1 + \frac{V_{GS} - V_T}{2nU_T} \right)$$

Solving for V_{EFF} in terms of the inversion coefficient requires expressing drain current in terms of the inversion coefficient.

$$I_D = 2\pi \mu_0 C_{\text{ox}} U_T^2 \left(\frac{W}{L} \right) \cdot IC$$

Substituting the drain current

$$IC = \left[\ln \left(1 + \frac{V_{GS} - V_T}{2nU_T} \right) \right]^2$$

Solving for V_{EFF} gives

$$V_{\text{EFF}} = 2nU_T \ln (e^{\sqrt{IC}} - 1)$$

Inversion Coefficient (IC)

- For analog design useful to define g_m/I valid over all regions of operation using EKV model [Enz, et al., Analog Integrat. Circuits Signal Process., 1995]:

$$\frac{g_m}{I_D} = \frac{1 - e^{-\sqrt{IC}}}{nU_T \sqrt{IC}} \approx \frac{1}{nU_T} \frac{2}{1 + \sqrt{1 + 4 \cdot IC}}$$

$$V_{\text{EFF}} = V_{GS} - V_T = 2 \cdot n \cdot U_T \ln (e^{\sqrt{IC}} - 1)$$
Typical Drain Current Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>nMOS</th>
<th>pMOS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{ox}</td>
<td>Gate-oxide thickness</td>
<td>13.5</td>
<td>13.5</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>0.5 μm, PD SOI</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>C_{ox}</td>
<td>Gate-oxide capacitance</td>
<td>2.56</td>
<td>2.56</td>
<td>$\text{fF}/\mu\text{m}^2$</td>
</tr>
<tr>
<td></td>
<td>0.5 μm, PD SOI</td>
<td>4.31</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>8.41</td>
<td>8.41</td>
<td></td>
</tr>
<tr>
<td>μ_0</td>
<td>Mobility (low field)</td>
<td>438</td>
<td>152</td>
<td>$\text{cm}^2/\text{V} \cdot \text{s}$</td>
</tr>
<tr>
<td></td>
<td>0.5 μm, PD SOI</td>
<td>372</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>422</td>
<td>80.2</td>
<td></td>
</tr>
<tr>
<td>$k_t = \mu_0 C_{ox}$</td>
<td>Transconductance factor (low field)</td>
<td>112</td>
<td>59</td>
<td>$\mu\text{A}/\sqrt{\text{V}}$</td>
</tr>
<tr>
<td></td>
<td>0.5 μm, PD SOI</td>
<td>160</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>355</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>n_0</td>
<td>Substrate factor (average moderate inversion value)</td>
<td>1.4</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 μm</td>
<td>1.4</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>1.35</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>$I_d = 2n_0\mu_0 C_{ox} U_0^{1/2}$</td>
<td>Technology current</td>
<td>0.21</td>
<td>0.07</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>0.5 μm, PD SOI</td>
<td>0.50</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 μm</td>
<td>0.64</td>
<td>0.135</td>
<td></td>
</tr>
</tbody>
</table>

Shape Factor and Gate Size

- Recall $IC = \frac{I_d}{I_d(\text{M.F.})} = \frac{I_d}{2n_0\mu_0 C_{ox} U_0^{1/2}} = \frac{I_d}{I_d\left(\frac{W}{L}\right)}$

- Two ways to change IC
 - Through drain current (ID) or
 - Gate size W/L, or the shape factor (S)

\[
S = \frac{W}{L} = \left(\frac{1}{IC}\right)\left(\frac{I_d}{I_d}\right) - \left(\frac{1}{10}\right)\left(\frac{100 \mu\text{A}}{0.64103 \mu\text{A}}\right) = 15.6
\]

the technology current of $I_d = 2n_0\mu_0 C_{ox} U_0^{1/2} = 0.64103 \mu\text{A}$

Or, W derived from fixed ID and L

\[
W = S \cdot L = \left(\frac{1}{IC}\right)\left(\frac{I_d}{I_d}\right) - \left(\frac{0.18 \mu\text{m}}{10}\right)\left(\frac{100 \mu\text{A}}{0.64103 \mu\text{A}}\right) = 2.8 \mu\text{m}
\]
MOSFET Noise

- Dominant noise sources for MOSFET
 - Thermal noise and
 - Flicker noise due to carrier trapping and de-trapping from SiO₂ interface

\[
\begin{align*}
V_0(f) &= \frac{K_F}{C_{ox}WL} \cdot f^{-\alpha} \\
I_0(f) &= 4kT \cdot n\Gamma g_m \\
V_n^2(f) &= \frac{K_F}{C_{ox}WL} \cdot f^{-\alpha} + 4kT \cdot n\Gamma g_m \\
\end{align*}
\]
- Gate referred noise
- \(K_F \) flicker noise factor and \(\alpha \) is the frequency exponent
- \(\Gamma \) is 0.5 in W.I. and 2/3 in S.I.
- \(n \) is the substrate factor

Gate Referred Thermal Noise

- Gate referred thermal noise for MOSFET

\[
V_n^2(f) = 4kT \cdot n\Gamma g_m
\]

- Input referred noise for fixed \(I_D \) increases with increasing inversion level
 - saturation thermal noise factor \(\Gamma \) increases
 - 1/2 in W.I. and 2/3 in S.I.
 - \(g_m \) decreases in strong inversion as \(I_C \) increases
- Flicker noise coefficient also increases in strong inversion

Note that \(V_n^2 \) decreases as \(I_D \) increases
(even as \(I_C \) increases)
Amplifier Design Example with IC

Recall Noise Analysis

Transfer Functions, Referred to Input

\[\Delta V_{\text{out}} = \sum_{k=1}^{N} G_{\text{in}k} \Delta V_{\text{in}k} \]

\[\Delta V_{\text{in}} = \frac{\Delta V_{\text{out}}}{G_{\text{in}}} \]

Input to Output

\[(\Delta V_{\text{in}})^2 - (\Delta V_{\text{out}})^2 = G_{\text{in}}^2 \left[1 + \sum_{k=1}^{N} \left(\frac{2G_{\text{in}k} \Delta V_{\text{in}k}}{G_{\text{in}}} \right)^2 \right] \]

5 steps to reduce input referred effects of variations:
- Minimize \(\Delta V_{\text{in}} \) (input variation)
- Minimize \(G_{\text{in}} \) (input stage transconductance)
- Reduce \(G_{\text{in}} \) of loads
- Minimize \(\Delta V_{\text{load}} \) of loads
Input Referred Noise

Analysis of this circuit reveals the input-referred thermal noise power to be

$$\sigma_{n,\text{thermal}}^2 = \frac{4kT}{g_{m1}} \left(\frac{1}{2} + \frac{g_{m2} + g_{m3}}{g_{m3}} \right) \Delta f.$$ \hspace{1cm} (4)

where \(\Delta f\) is the phase margin. As \(M_1\) and \(M_3\) are made longer, the OTA input capacitance \(C_{in}\) increases. The input-referred noise of the hoiosmulator can be related to the OTA input-referred noise by

$$\frac{\sigma_{n,\text{nor}}^2}{\sigma_{n,\text{in}}^2} = \left(\frac{C_1 + C_2 + C_{in}}{C_1} \right)^2 \frac{1}{\nu_{n1}}.$$ \hspace{1cm} (5)

where \(C_2\) and \(C_3\) are the feedback network capacitors shown in Fig. 1. Since \(C_{in}\) contributes to a capacitive divider that attenuates the input signal, any increase in \(C_{in}\) increases the input-referred noise of the overall circuit [26]. An optimum gate area

<table>
<thead>
<tr>
<th>Devices</th>
<th>(W/L) ((\mu m))</th>
<th>(I_{D1} (\mu A))</th>
<th>Inversion Coefficient</th>
<th>(g_{m1}/I_{D1} (V^{-1}))</th>
<th>(V_{EFP} = V_{CE} - V_{F1} (V))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>400/0.4</td>
<td>1.0</td>
<td>0.43</td>
<td>20.6</td>
<td>-0.076</td>
</tr>
<tr>
<td>(M_2)</td>
<td>12.0/44.8</td>
<td>4.0</td>
<td>71.0</td>
<td>10.5</td>
<td>-0.070</td>
</tr>
<tr>
<td>(M_3)</td>
<td>6.4/12.8</td>
<td>4.0</td>
<td>171.1</td>
<td>2.9</td>
<td>-0.096</td>
</tr>
<tr>
<td>(M_4)</td>
<td>20.0/2.0</td>
<td>8.0</td>
<td>71.1</td>
<td>2.9</td>
<td>-0.096</td>
</tr>
<tr>
<td>(M_{ref})</td>
<td>12.0/3.2</td>
<td>4.0</td>
<td>7.8</td>
<td>8.1</td>
<td>-0.290</td>
</tr>
<tr>
<td>(M_{ref})</td>
<td>6.4/0.2</td>
<td>4.0</td>
<td>45</td>
<td>3.9</td>
<td>-0.481</td>
</tr>
</tbody>
</table>

Noise Efficiency Factor

Since we are interested in minimizing noise within a strict power budget, we must consider the tradeoff between power and noise. The noise efficiency factor (NEF) introduced in [7] quantifies this tradeoff:

$$\text{NEF} = \frac{V_{EFP}}{V_{EFP} + V_{in}}$$ \hspace{1cm} (6)

where \(V_{EFP}\) is the input-referred max noise voltage, \(I_{D1}\) is the total amplifier supply current, and \(BW\) is the amplifier bandwidth in hertz. A high-performance single bipolar transistor (with no \(1/f\) noise) has an NEF of one; all practical circuits have higher values.

Substituting the expression for amplifier thermal noise (4) integrated across the bandwidth \(BW\) into (6) and assuming \(g_{m2} \ll g_{m1}\), we find

$$\text{NEF} = \sqrt{\frac{4I_{D1}}{3U_T^2}} \sqrt{\frac{16}{g_{m1}}}.$$ \hspace{1cm} (7)

where \(I_{D1}\) is the drain current through \(M_1\), which is 1/4 of the total amplifier supply current. From this expression, it is clear that if we wish to minimize the NEF, we must maximize the transconductance \(g_{m2}/I_{D1}\) of the input devices \(M_1\) and \(M_2\). In weak inversion, \(g_{m2}/I_{D1}\) reaches its maximum value of \(n/U_T\), so we make \(W/L\) very large to approach subthreshold operation with microamp current levels. Using a more accurate model for thermal noise valid in weak inversion [21] yields

$$\text{NEF} = \sqrt{\frac{4}{g_{m1}^2}} \left(\frac{I_{D1}}{g_{m1}} \right).$$ \hspace{1cm} (8)

In weak inversion, the expression for NEF reduces to

$$\text{NEF} = \sqrt{\frac{4}{n^2}} \cong 2.0.$$ \hspace{1cm} (9)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 6, DECEMBER 1987
Supply current versus normalized noise